Impaired processing of human pro-islet amyloid polypeptide is not a causative factor for fibril formation or membrane damage in vitro.
نویسندگان
چکیده
Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus (DM2). hIAPP is synthesized by islet beta-cells initially as a preprohormone, processing of which occurs in several steps. It has been suggested that in DM2 this processing is defective and that aggregation of the processing intermediates prohIAPP and prohIAPP(1-48) may represent the initial step in formation of islet amyloid. Here we investigate this possibility by analyzing the aggregation, the structure, and the membrane interaction of mature hIAPP and its precursors, prohIAPP and prohIAPP(1-48), in vitro. Our data reveal that both precursors form amyloid fibrils in solution but not in the presence of membranes. This inhibition is in contrast to the catalyzing effect of membranes on fibril formation of mature hIAPP. Importantly, in the presence of membranes, both precursors are able to inhibit fibrillogenesis of mature hIAPP. These differences in behavior between mature hIAPP and its precursors are most likely related to differences in their mode of membrane insertion. Both precursors insert efficiently and adopt an alpha-helical structure even with a high lipid/peptide ratio, while mature hIAPP rapidly adopts a beta-sheet conformation. Furthermore, while mature hIAPP affects the barrier properties of lipid vesicles, neither of the precursors is able to induce membrane leakage. Our study suggests that the hIAPP precursors prohIAPP and prohIAPP(1-48) do not serve as amyloid initiators but rather prevent aggregation and membrane damage of mature hIAPP in early stages of its biosynthesis and intracellular transport.
منابع مشابه
Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus
Human islet amyloid polypeptide (h-IAPP) is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM). Since the causative factors of IAPP (or amylin) oligomer aggregation are not full...
متن کاملConformations of Islet Amyloid Polypeptide Monomers in a Membrane Environment: Implications for Fibril Formation
The amyloid fibrils formed by islet amyloid polypeptide (IAPP) are associated with type II diabetes. One of the proposed mechanisms of the toxicity of IAPP is that it causes membrane damage. The fatal mutation of S20G human IAPP was reported to lead to early onset of type II diabetes and high tendency of amyloid formation in vitro. Characterizing the structural features of the S20G mutant in it...
متن کاملIslet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes
Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...
متن کاملBRICHOS domain of Bri2 inhibits islet amyloid polypeptide (IAPP) fibril formation and toxicity in human beta cells
Aggregation of islet amyloid polypeptide (IAPP) into amyloid fibrils in islets of Langerhans is associated with type 2 diabetes, and formation of toxic IAPP species is believed to contribute to the loss of insulin-producing beta cells. The BRICHOS domain of integral membrane protein 2B (Bri2), a transmembrane protein expressed in several peripheral tissues and in the brain, has recently been sh...
متن کاملCholesterol modulates the interaction of the islet amyloid polypeptide with membranes.
The deposition of insoluble amyloid fibrils resulting from the aggregation of the human islet amyloid polypeptide (hIAPP) within the islet of Langerhans is a pathological feature of type 2 diabetes mellitus (T2DM). Increasing evidence indicates that biological membranes play a key role in amyloid aggregation, modulating among others the kinetics of amyloid formation, and being the target of tox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 48 46 شماره
صفحات -
تاریخ انتشار 2009